Wednesday, June 8, 2022

The character tables for the groups of order 8: Z_4 x Z_2

 The group ℤ4 ✕ ℤ2 has is generated by two elements we will call a and b, where a⁴ = 1 and b² = 1. On the complex unit circle, we can send a to powers of i (i, -1, -i and 1) and b to 1 or -1. all the rest of the elements will be defined by the rule of homomorphisms, specifically f(xy) = f(x)f(y). 


Instead of proceeding step by step, I present the entire character table here and color the entries for column a and column b.


    |  1  |  a  |  a² |  a³ |  b  | ba  | ba² | ba³ |

1st |  1  |  1  |  1  |  1  |  1  |  1  |  1  |  1  |

2nd |  1  |  i  | -1  | -i  |  1  |  i  | -1  | -i  |

3rd |  1  | -1  |  1  | -1  |  1  | -1  |  1  | -1  |

4th |  1  | -i  | -1  |  i  |  1  | -i  | -1  |  i  |

5th |  1  |  1  |  1  |  1  | -1  | -1  | -1  | -1  |

6th |  1  |  i  | -1  | -i  | -1  | -i  |  1  |  i  |

7th |  1  | -1  |  1  | -1  | -1  |  1  | -1  |  1  |

8th |  1  | -i  | -1  |  i  | -1  i  | -1  | -i  |









No comments:

Post a Comment

The character tables for D_4 and the quaternions

  We have looked at the character tables for the abelian groups of order 8, ℤ ₈, ℤ ₄ ✕ℤ ₂ and ℤ₂ ✕ ℤ₂ ✕ ℤ₂. Because they are abelian, each h...