Thursday, June 9, 2022

The Character tables of the groups of order 8: Z_8

 8 is generated by a single element, the square root of i, which I will denote by the letter a. Wherever a is sent, all other entries will be to the appropriate power of a. The eight elements will be called 1, a, i, ai, -1, -a, -i and -ai.



 *    1    a    i   ai   -1   -a   -i   -ai

1st | 1    1    1    1    1    1    1    1 

2nd | 1    a    i   ai   -1   -a   -i   -ai

3rd | 1    i   -1   -i    1    i   -1   -i 

4th | 1   ai   -i    a   -1   -ai   i   -

5th | 1   -1    1   -1    1    -1    1  -1 

6th | 1   -a    i   -ai  -1     a   -i  ai

7th | 1   -i   -1   i     1    -i   -1   i

8th | 1   -ai  -i  -a    -1    ai    i   a


Checking for orthogonality is a little tougher because you must turn one row into its complex conjugates before doing the dot product, but it does still work. This orthogonality makes group representation theory a useful part of physically describing an object whose group actions are represented by some set of matrices.

 

Tomorrow: The character tables for the quaterions and D4

No comments:

Post a Comment

The character tables for D_4 and the quaternions

  We have looked at the character tables for the abelian groups of order 8, ℤ ₈, ℤ ₄ ✕ℤ ₂ and ℤ₂ ✕ ℤ₂ ✕ ℤ₂. Because they are abelian, each h...